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Abstract —A boundary integral method for cracks in an anisotropic material is presented. The
method is based on the integral equation for the resultant forces along the cracks. The integral
kernels contain only a weak logarithmic singularity, which simplifies the numerical implementation.
Crack closure is also taken into account in the numerical formulation. Numerical tests are presented
to illustrate the efficiency and the reliability of the proposed method.

[, INTRODUCTION

The increased use of composite materials has resulted in a growing interest in crack problems
in anisotropic materials, sce for example, the papers by Sih et al. (1965), Bowie and Freese
(1972), Delale and Erdogan (1977), Cinar and Erdogan (1982) and Mishra and Misra
(1983). It is known that the boundary integral method is very efficient for the solution of
lincar clastic crack problems. However, most of the results for cracks in an anisotropic
medium are based on equations which are derived by using the integral transform method.
This technique limits the application to rather simple geometries. A numerical method
which is cusy to apply and valid for more general crack configurations would be very useful
for fracture investigations.

In recent years, three different kinds of boundary integral equations have been applied
to crack problems in a two-dimensional isotropic elastic medium. The first kind of equation
is an integral equation for the displacements on the boundary, the standard boundary
clement method (BEM) {cf. Brebbia et al., 1984). The second kind of equation is an integral
expression for tractions on the crack surfaces (cf. Zang and Gudmundson, 1988) and the
third kind of equation is an integral equation for resultant forces along the crack surfaces
(cf. Cheung and Chen, 1987; Zang and Gudmundson, 1989a,b, 1990). As a comparison
with the other two kinds of equations, the resultant force type equation has some advan-
tages. Unlike the standard BEM, geometrical sectioning is no longer required by employing
the resultant force type equation. The unknowns of the problems can thus be significantly
reduced. In addition, the integral kernels in the equation contain a weak logarithmic
singularity, which is very easy to handle in the numerical calculation. It can also be proved
that the equation is valid for every point along the crack, which will simplify the selection
of the collocation points. Numerical tests by Cheung and Chen (1987) and Zang and
Gudmundson (1989a, b, 1990) indicate that the method employing the resultant force type
cquation is probably the most efficient and reliable method for the solution of kinked crack
problems.

In the present paper, a boundary integral equation for the resultant forces along crack
lines with arbitrary crack configuration in a rectilinearly anisotropic plane is derived. A
numerical implementation similar to the method by Zang and Gudmundson (1989a) is
cmployed to solve the equation. Crack closure is also taken into account by using the same
numerical algorithm presented by Zang and Gudmundson (1990). Numerical tests are
presented to illustrate the efficiency and reliability of the proposed method.
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2. THEORETICAL BASIS AND NUMERICAL IMPLEMENTATION

In the present study. plane anisotropic materials are considered. The generalized
Hooke's law for problems without coupling between out-of plane shear and in-plane stresses
can be written as (cf. Lekhnitskii, 1981)

& = zIla’x4'(1120'}"{'"1”0.: +‘1|6r,r‘vs
&, = %20+ 2220, + X230 + X367y,
& =230, +%;30, +%330.,

7.\')' =40 +a260’y +1667.n' ’ (l)
or for plane strain and stress

£ =By 10+ B 120, + B et
& = B120:+ 220, + P16y,
Yo = B160c+B260,+ BssTrsn 2)

where for plane strain deformation problems

/}./’ = a:/—ana/]/au (a.,‘ = a,,).

. =0, (3)
and for planc stress problems

/’i/ = ;.

o, = 0. 4

For an orthotropic materiil with the material principal directions coinciding with the
coordinate axes, eqn (1) reads

= ar/El—'VIZJy/EZ_VIJG:/EJ‘

£, = —vyo /B +a,/E;—vy0,/Ey,
£. = —vy0,/E,—vyy0,/E'+0 [E,,
‘y.ry = r,\',V/GIZ' (5)

In eqn (5), Poisson’s ratios and Young’s moduli satisfy the following relation
v,/ E; = v /E. (nosumofkandj). (6)

The problem can be formulated by employing complex potentials (Lekhnitskii, 1981).
The components of the displacements, the stresses and the resultant forces can be expressed
as

u,=2Re[p,®(z)) +p:Dy(z2)],
u, = 2 Re[q,®,(z)) +q,P:(22)],
0. =2 Re [ui®)(z)) +pi®3(z))),
6, =2 Re[®)(z1) + D3 (=2)],

Ty = =2 Re [4, D1 (z ) + 1, P3(22)).
F.= 4+2Re[u,®(z)) +p,P:(2)}+C\,
F,= =2Re[®,(z))+D,(=)]+ C,, N
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Fig. 1. An edge dislocation in an anisotropic plane.

where
Py =B +Bi2—Bion,
qi = Brap, +B22/1t; — B
=x+uy (fj=1,2). ®

Ineqn (7), the primes denote the derivatives with respect to the arguments, C, is an arbitrary
real constant and g, is a root of the following characteristic equation

Boar* =20 e’ + QB2+ Boasdt? = 2B 2ep+ 12 = 0. 9

It has been shown by Lekhnitskii (1981) that the roots of eqn (9) can never be real. For a
particular material, the roots of eqn (9) can thus be chosen as

fy =y, fly = U, (10)

where bars denote complex conjugation,

It is now assumed that an edge dislocation is located at a point z4(x,, yy), see Fig. 1.
If the plane is cut by a straight line from the point z, to infinity, an upper side and a lower
side of the line can be defined, see also Fig. 1. The phase angle will thus change by 2= if the
point =, is encircled from the lower to the upper side of the line. For a particular material,
the roots g, and i, can be chosen such that Im (4,) > 0 and Im (u,) > 0. For these kinds
of roots, it can be shown that

In[(z;) —z,)/(z] —2,0)] = 2mi, (11)

where 20 = xg+ 4,54 (f = 1,2),1 = \/— | and the superscripts + and — denote the upper
and lower side of the sectioning line.

The potentials for the edge dislocation at a point -, can be expressed as (Teutonico,
1969)

A
®,(z) = -2-7—t—i|n (zi—=zv0)s
B
02(32)=5"t‘i|n(32“3:o)a (12)

where A and B are complex constants. These two constants can be determined by the
following conditions
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X

Fig. 2. Geometry and coordinate systems for a kinked crack.

F\'(:+)-Fr(:_) =0,
F.(z*)=-F,(:7) =0, (13)

u(z*)—u (") = Au,,

u_r(:*.)-uv(:ﬁ) = Au.‘v (14)

where Au, is the magnitude of the dislocation. Substituting eqns (12) into eqns (7) and using
eqns (13), (14), the constants 4 and B can be expressed as

A= (A .,+iA2,)Au,,
B = (B, +iB,)Au, (1)

where 4, and 8, (k = 1,2) are rcal constants which are given in the Appendix.

The displacements, stresses and resultant forces generated by the edge dislocation at
2o can now be easily obtained. For example, the resultant forces at a point z can be expressed
as

f‘j(:) = F‘}k(:! :O)Auk+cp (l6)

where F,, is given in the Appendix.

If a piece-wise smooth crack I', (see Fig. 2) is considered and if the crack ts sym-
metrically loaded (i.e. 1/ = —1;7, where 7,is the traction on the crack surfaces), thc equation
for the resultant forces can in this case be written as

F/(:) = J:_ F/k(zv ZO)DI:(ZO) dS(Z(,)"'C*. (17)
where

d
D/‘ = a—"y(Allk) (]8)

The integral in eqn (17) is only performed along the lower crack line. If the point = tends
to the lower side of the crack line I'C, the resultant forces can be determined from the
integral of the tractions on the crack surfaces from crack tip A to the point = (zeI'[).
Thus,
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J“ T (i) di = L Fulz.20) D20} ds (20) +C,. (19)
A .

<

Since only internal cracks are considered, the following constraint equation must be fulfilled

“ ) Dk(:O) ds (:0) = {. (20)

T,

The problem of a piece-wise smooth crack in an anisotropic plane can now be for-
mulated by an integral equation for the resultant forces along the crack, eqn (19), coupled
to a constraint equation for the dislocation densities along the crack, eqn (20). Several
features can be observed from eqn (19). First the integral kernel F,; only contains a
logarithmic singularity. as - - z,. Integrals with this kind of singularity are very easy to
handle in the numerical calculations. Secondly, it can be proved that eqn (19) is valid for
every point along the crack I, This feature will simplify the selection of collocation points
along the crack line.

Apart from a few special cases. eqn (19) has to be solved numerically. In the present
investigation, & boundary element technique associated with a collocation method is
employed. Since the form of the integral kernels F,, in eqn (19) is similar to those for cracks
in an isotropic planc (Zang and Gudmundson, 1989a), the same numerical implementation
is utilized tn the present investigation and will only briefly be explained here.

A crack formed by two straight lines is considered. The crack is divided into two
scgments separated by the crack kink. Each line is then discretized into N, elements with
N+ 1 nodes. Thus a double node with the same coordinate is generated at the crack kink.
The line coordinate s, and the dislocation densities D,, within an element away from the
crack tip. are described by standard linear isoparametric shape functions. For instance, the
interpolations for the interval a4 , , become

s= M (s + My, .
Dy =MD, s+ My(mD, s, 21

M) = (1-m)/2,
M) = (L+m)/2, (22)

where 5, denotes the coordinate, D, the dislocation density at node a,, and {n| <1 the
local coordinate for the element under consideration. For elements close to the crack tips,
for example the first clement a4, the following interpolation is used for the dislocation
densitics

D, = (L +n)[M, (D} +My(nD, 1] 23

where 5 = — 1 denotes the crack tip.

From the discussion above, it follows that the unknowns in eqns (19), (20) are nodal
dislocation densities, which arc denoted by D} or D ,. A collocation method is then
employed to solve the equations. The integrals along I' are numerically evaluated by using
Gauss -Chebyshev quadrature for non-singular parts and explicit analytical integration for
singular parts. Based on the results of Sih et al. (1965), the asymptotic expressions for the
displacement jumps, for example near crack tip A, can be expressed as

Allu = 2\/ an(K;C”-Q-K"Cl;)/T!.
Bup = 2/2nr(K,Cyy + Ky C2)/m, (24)

where
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Coo=Rel=piu+pp) (u—p2)l.

=Refi(=p,+p;) (u —p)]
C:o = Re[i(—qus+q:00) (1) — )l

Cay = Relil~q,+¢2) (u, —u3)). (25)

The stress intensity factors at crack tip A can thus be calculated afterwards as

Ky = /nli2(D:C::~D}C,)/C.
Ky =/ 2DC, = D2C2)/C. (26)

where

C=CCy;~C;,Csys (27

and / is the length of the first element. It should be pointed out that the material constants
(8.« etc.), the roots pu,. g, and the dislocation densitics DX D¥in eqns (24). (25) should be
evaluated in the coordinate system (.x,.v,) which is attached to the crack tip A, see Fig. 2.

I NUMERICAL RESULTS

In this section, three numerical examples are presented to illustrate the efficiency and
the rehiability of the proposed method. An orthotropic material is employed for all the
examples. The material is characterized by Young's moduli £, = E, = 10, £, = 30, Pois-
son's ratios vy = vy, = 025, v = 0.2 and the shearing modulus ¢/, = 5. These material
constants represent a typical glass liber/epoxy composite (cf. Jones, 1975). In addition,
plane stram deformation is assumed for all the tests. It is noticed that crack closure may
occur tn some cases under the action of applicd loads. In these cases, the friction between
the contact crack surfaces is neglected and the numerical algorithm presented by Zang and
Gudmundson (1990) is employed Lo solve the contact problems.

3.4 A straight line crack

A straight line crack in an orthotropic plane is considered, see Fig. 3. The material
principal direction E| is rotated an angle ff with respect to the crack. A uniformly distributed
normal pressure o, on the crack surfuces is considered. This problem has been examined
by Sih ¢ al. (1965). Their results show that the stress intensity factors are independent of
the material constants. Based on the potentials provided by Sih and Chen (1981), the
explicit expressions for the displacement jumps along the crack can be written as

€
/(

2a

X

Frg. 3. A straght line crack in an orthotropic plane.
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Table 1. Displacement jumps along the crack for the straight line crack in Fig. 3. The numbers within parentheses
indicate the number of elements used in the calculations

s Au, M Au Au,t'® Au, Au,M Au; Au, t Au.t
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.027 —0.0160 0.0606 -0.0161 0.0612
0.074 —0.0260 0.0988 -0.0263 0.0998 -0.0263 0.0998
0.200 —-0.0417 0.1584 —0.0421 0.1597 —0.0420 0.1595 —0.0419 0.1590
0.400 -0.0539 0.2123 —-0.0559 0.2123 —0.0559 0.2124 -0.0558 0.2120
(0.600 —0.0640 0.2430 —0.0640 0.2431 —0.0630 0.2431 —0.0640 0.2429
0.800 -~0.0684 0.2597 —0.0684 0.2598 —0.0684 0.2599 —0.0684 0.2597
1.00 —0.0698 0.2651 —0.0698 0.2652 —0.0698 0.2652 —-0.0698 0.2650

K, 1.0022 1.0025 1.0013 1.0000

t Results from the analytic expression.

Au, = 20,(a° —x*)"Cy,.

Au, = 200(a* -x)"2C,,. (28)

where v = +a denotes the crack tips, and €, and C,, are given in eqn (25).

Since a boundary ¢lement technigue was employed in the present investigation, the
present example was used to study the effect of the element sizes on the accuracy of the
numerical results. The results for the displacement jumps along the crack calculated for
f# = 45" and ditferent numbers of elements are presented in Table | and compared to the
analytical expressions of egn (28). The results for the stress intensity factor normalized with
respect to . ma are also presented in Table 1. It is observed that the result for the stress
intensity factor is insensitive to the size of the singular ¢lement. In order to achicve an
accurate result for the displacement jumps near crack tips, a singular element with a size
of ubout 3% of half crack length is recommended.

3.2, A T-shuped crack

A T-shaped crack in an orthotropic plane subjected to remote uniform tension 6, in
the v direction is considered, sce Fig. 4. The material principal directions are assumed to
coincide with the coordinate axes. The crack is first cut into three segments at the crack
kink O. The first part, from crack tip A to O, is modeled by 12 elements. The numbers of
the clements for the other two bruanches are varied from five to 12, dependent on the lengths
of the branches. In order to check the reliability of the present method, a finite element
calculation using the program ADINA was carried out for the case where hfa = 0.5. It
should be mentioned that crack closure occurs in this case in the branches parallel to the v
direction.

y (E;)
C
a Siflo /‘-\
™
Ez S, X (E1 )

B o |

Fig. 4. A T-shaped crack in an orthotropic plane.
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Tuble 2. Displucement jumps along the crack for the T-shaped crack

5 Aus Au.t $s Aus Au.t
0 0.0004) 0.0000 0 0.0509 0.0506
01 0.06023 00615 0.1 0.0448 0.0447
0.2 0.0833 0.0833 0.2 0.0386 0.0385
0.3 0.0967 0.0966 03 0.0313 0.0314
0.4 0. 1048 0.1048 0.4 0.0222 0.0222
(U 0.1092 0.1093 0.5 0.0000 (.0000
0.6 0.1103 0.1106
0.7 0.1093 0.1093
0.8 0.1062 0.1063
0.9 0.1031 0.1029
1o 0.1018 0.1012

t Results by the tintte element calculation.

Table 3. Normalized stress intensity fuctors for the T-shaped crack

hu LY¥ Kis Kus K.t Kyt Kt
0.01 0.7089 0.1260 0.1998 0.7095 0.1837 0.2401
0.08 0.7125 0.0640 0.2148 0.7145 0.0792 0.2591
0.10 0.7162 0.0247 0.2262 0.7192 0.0144 0.2767
(0.20 0.7225 0.0000 0.2418 0.7284 0.0000 0.2955
0.30 0.7295 0.0000 0.2495 0.7393 0.0000 0.3026
0.40 .7373 0.0000 0.2529 0.7812 0.0000 0.3045
0.50 0.7458 0.0000 0.2536 0.7642 0.0000 0.3022

t Results for sotropie matertal.

In Table 2, the results for Au; along the branches AQ and OB computed by the present
method are compared to the finite clement results. A good agreement is observed. The
results for the stress intensity factors normalized with respect to a4y, ne computed for
ditferent ratios h/e are presented in Table 3. In order to show the effect of the material
properties on the stress intensity tuctors, results for the same problem but with an isotropic
material are also presented in Table 3. 1t is observed that if the length of the branches
parallel to the y direction is short enough, no crack closure occurs at these two crack tips.
Furthermore, it is found that the material properties have a larger effect on the results for
crack tips B and C than for crack tip A.

3.3, A crack with one kink

A main crack with a small kinked branch subjected to remote uniform tension a, in
the v direction is considered, sce Fig. 5. In this test, the coordinate axes are attached to the
main crack, the ratio fa = 0.01 is employed, the angle 2 between the main crack and crack
kink varies from —90 to 90" and the material principal direction £ is rotated an angle f§
from the main crack. It was observed that the results for the stress intensity factors at the
main crack tip were almost uninfluenced by the presence of the small branch (K = m,\/’m/.
KAy = 0). The results for stress intensity factors at the branched tip normalized with respect

<

' 2a X

Fig. 5. A crack with one kink in an orthotropic plane.
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1.2 . T r—— -

Fig. 6. Normalized stress intensity factors K, for the kinked crack in Fig, 5. Stars denote the results
calculated for § = 0, circles for fi = 30, squares for ff = 60" and triangles for § = 90",

-0.6 . L 5 i s
-90 -30 3o 90

Fig. 7. Normualized stress intensity factors K, for the kinked crack in Fig. 5. Stars denote the results
calcutated for ff = 0, circles for i = 30, squares for ff = 60 and riangles for f = 90,

to au\/rm are presented in Fig. 6 and Fig. 7. These results can be valuable for understanding
the mechanism of crack kinking in an anisotropic plunc.

4. DISCUSSION

A boundary integral method for cracks in an anisotropic plane has been presented.
Since the method is based on the resultant force type equation, it shows the sume advan-
tageous features which have been demonstrated for the corresponding formulations for
isotropic materials. Employing the same numerical algorithm presented by Zang and
Gudmundson (1990). crack closure could be taken into account without any further diffi-
culty. The proposed method is easy to apply and valid for cracks with any geometrical
configurations. The numerical tests demonstrated that the present method is an efficient
and reliable tool for the solution of crack problems in an anisotropic planc.

In the present study, only infinite geometries have been considered. Cracks in a finite
geometry can be handled by an application of the standard boundary element method
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(BEM) for the outer boundary and the present method for crack lines, see Zang and
Gudmundson (1989b) for an isotropic application.
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APPENDIX

In a purticular coordinate system, the material constants (f, ete,) and the roots of eqn (9) can be evaluated.
The following values can be detined

#o= gy Hgy (1 > 0),
p=patipn =ﬁnl‘f+/"u"‘ﬂmﬂ, =12,
g, = g +ig = B+ Baln, = B, (Al)

where g1, py. g, and gs, pys, 4, denote real and imaginary parts respectively.
The constants A (A4 = A, +id, ) and B (8 = B, +iBy) in eqn (15} can be expressed as

Ay = +unk/(2E),

Ay = —pE/(2E),

Ay = ~—unky/Q2E),

Ay = +pnkE J2E),

B, = —A

By = —Ay,

By = —pody i+ — ) A/,

By = —pAg/puar+ (e —pand Al (A2)

il

Ey=undpy—pa) —palan =l
Eyy= —papo+ppan,
Ey o= pa(go~gu) =408 —pad
Eyy = —pnqt g
E=E E,—ELE,,. (A3}

The integral kernels F,, megn (19) can be given as
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H
Fu=+ ;{(ﬂu“n +upd) in R+ du—poeA)0 + (00 Bu + 4B In(R) +iu By —u:Bu)0:)

-1
Fu= —{Auin(R)+ 400, + By ln(R) + B0 (A4)

where
R, = (x—x¢)+p, (¥ ~¥y).
R,: = (¥ —yo).
R} = (R, +R}).
6 =cos ' (R, /R) (j=12). (A5)



